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The “Methane Carbon’ Stereochemistry of the Acyclic
Oxadi-7-methane Photorearrangement!

Sir:
During the last 5 years, the oxadi-r-methane photorear-
rangement of §,y-unsaturated ketones has been extensively

investigated.? The possible mechanism of the reaction is pic-
tured in qualitative valence bond terms in eq 1.3 The diradi-

Y —F] -1 =7

1 2

caloids 1 and 2 may be true intermediates in a stepwise process
or may merely represent points on the energy hypersurface of
a concerted [,2 + ;2 + 2] or [2 + ,2] cycloaddition. To gain
more insight into the mechanistic details, the reaction stereo-
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chemistries of many §,y-unsaturated ketones have been in-
vestigated,* and it has been found that a high degree of
asymmetry is preserved at the “methane carbon”. Both re-
tention and inversion of this carbon have been reported, and
this dichotomy has been attributed to steric factors.* It has
been concluded, however, that the results favored a concerted
[+2 + ,2] pathway.*s

We have investigated the “methane carbon” stereochemistry
of the oxadi-r-methane reaction of optically active rrans-3-
ethyl-3-methyl-5-phenyl-4-penten-2-one (3-t)° which, being
acyclic, is free from all possible steric and conformational
prejudices which were present in all previously studied com-
pounds.

The degree of optical purity of the starting material 3-t was
established by the degradation of the ketone to the optically
active amine 4 (hydrogenation, haloform reaction, Curtius
degradation, and hydrolysis) followed by treatment with the
optically active acid chlorides 57 to yield the amides (Scheme
I). The resulting diasteromeric amides 6a and 6b were found
to be greater than 90% isomerically pure (NMR analysis), a
result which indicates that the optical purity of 3-t was at least
90%.

A benzene solution which was 0.01 M in optically active 3-t
and 0.01 M in chrysene8 (E, = 57 kcal/mol) was irradiated
through a Nonex filter (10% T at 314 nm) with a 450-W me-
dium-pressure Hanovia lamp for 48 h. The sensitizer chrysene
absorbed greater than 99% of the light under these conditions.
The major products (Scheme II), isolated by silica gel chro-
matography, were the oxadi-r-methane products 7-t,t and
7-t,c, the 1,3-acyl shift product 8, and the cis isomer (3-¢} of
the starting material as well as a small amount of the starting
material. Neither of the other two possible oxadi-r-methane
products, 7-¢,c and 7-¢,t, was detected (<1%).

7-cc 7-ct

The cyclopropyl ketone isomers 7-t,t and 7-t,c were sepa-
rated by high-pressure liquid chromatography (u-porasil, 1%
EtOAc-hexane) and were found to have small specific rota-
tions, namely [a]?%49s —12° for 7-t,t (99% purity by hplc,
constant rotation) and [a]?349s +10° for 7-t,c (95% purity by
HPLC). Independent synthesis of optically active 7-t,t°
([e]®405 —125 £ 3° (¢ 1.0, hexane)) indicated that the com-
pound generated photochemically was no more than 10% op-
tically pure.

Possible processes which could intervene in the production
of largely racemized photoproducts 7-t,t and 7-t,c are: (a)
photoracemization of starting enones; (b) formation and
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conversion of 1,3-shift product 8 to the observed oxadi-=-m-
ethane products; (¢) photoracemization and/or photoepim-
erization of the isomeric trans photoproducts, themselves; and
(d) photoepimerization of potential cis photoproducts 7-¢,¢ and
7-c,t. All of these processes were ruled out by appropriate ex-
periments: recovered starting enone showed less than 15% loss
of optical activity (see Scheme II); 1,3-shift product 8, optically
active trans photoproduct 7-t,t, and directly synthesized op-
tically inactive cis ketone 7-c,c!? were stable to the photo-
reaction conditions for the full reaction time.!!

In order for concerted, orbital symmetry allowed mecha-
nisms to produce nearly racemic products, it requires the triplet
of cis enone 3-¢!! to follow one allowed pathway and the triplet
of trans enone 3-t to follow the other allowed pathway, i.e., [+2
+ 2¢] and [,2; + ,2,], respectively. For these two processes
to occur in about equal amounts is considered most unlikely.
Thus, the transformation of 3-t and/or 3-c to nearly racemized
products is best attributable to a stepwise mechanism which
has at least one achiral intermediate, this being a diradicaloid
species like 2 (or a loose radical pair).!2 The small amount of
residual activity could be due to a small degree of asymmetric
induction at the 8-carbon in the formation of the species related
to 1 or to competing concerted processes.

In view of the present results, the finding of greater than 90%
inversion of the “methane carbon’ stereochemistry in the case
of the relatively sterically unhindered ketone 10%8 warrants
comments. It may be that the reaction of 10 also follows a
stepwise mechanism but that the diradicaloid intermediate 11,
which lies on the pathway for the enantiomer of the observed
product, is energetically inaccessible because of the strong
nonbonded hydrogen-hydrogen interactions shown. However,

(o
“CH,CO.H “'CH,COH
10 1

the likelihood that this steric effect is large enough to account
for the reported high degree of stereoselectivity requires further
evaluation. It is also possible that, as constraints are added to
the 3,y-enone system, the mechanism becomes concerted and
species like 2 are no longer intermediates. Additionally, it
cannot be ruled out that the phenyl conjugation present in 3-t
(and 3-c) stabilizes the benzylic diradical species to such an
extent that the stepwise rearrangement competes successfully
with a concerted process.
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